Demythization of XML Query Processing: Technical Report
نویسندگان
چکیده
XML queries can be modeled by twig pattern queries (TPQs) specifying predicates on XML nodes and XPath relationships satisfied between them. A lot of TPQ types have been proposed; this paper takes into account a TPQ model extended by a specification of output and non-output query nodes since it complies with the XQuery semantics and, in many cases, it leads to a more efficient query processing. In general, there are two approaches to process the TPQ: holistic joins and binary joins. Whereas the binary join approach builds a query plan as a tree of interconnected binary operators, the holistic join approach evaluates a whole query using one operator (i.e., using one complex algorithm). Surprisingly, a thorough analytical and experimental comparison is still missing despite an enormous research effort in this area. In this paper, we try to fill this gap; we analytically and experimentally show that the binary joins used in a fully-pipelined plan (i.e., the plan where each join operation does not wait for the complete result of the previous operation and no explicit sorting is used) can often outperform the holistic joins, especially for TPQs with a higher ratio of non-output query nodes. The main contributions of this paper can be summarized as follows: (i) we introduce several improvements of existing binary join approaches allowing to build a fully-pipelined plan for a TPQ considering non-output query nodes, (ii) we prove that for a certain class of TPQs such a plan has the linear time complexity with respect to the size of the input and output as well as the linear space complexity with respect to the XML document depth (i.e., the same complexity as the holistic join approaches), (iii) we show that our improved binary join approach outperforms the holistic join approaches in many situations, and (iv) we propose a simple combined approach that uses advantages of both types of approaches.
منابع مشابه
Apply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملPrototyping a Vibrato-Aware Query-By-Humming (QBH) Music Information Retrieval System for Mobile Communication Devices: Case of Chromatic Harmonica
Background and Aim: The current research aims at prototyping query-by-humming music information retrieval systems for smart phones. Methods: This multi-method research follows simulation technique from mixed models of the operations research methodology, and the documentary research method, simultaneously. Two chromatic harmonica albums comprised the research population. To achieve the purpose ...
متن کاملApply Uncertainty in Document-Oriented Database (MongoDB) Using F-XML
As moving to big data world where data is increasing in unstructured way with high velocity, there is a need of data-store to store this bundle amount of data. Traditionally, relational databases are used which are now not compatible to handle this large amount of data, so it is needed to move on to non-relational data-stores. In the current study, we have proposed an extension of the Mongo...
متن کاملXML Query Processing: A Survey
XML (Extensible Markup Language) is emerging as a de facto standard for information exchange among various applications on the web because of its inherent data self-describing capability and flexibility of organizing data. With increased impact of XML on information exchange, it is particularly important to develop high-performance techniques to query large XML data repositories efficiently. Th...
متن کاملFPGAs for Dynamic (XML) Query Workloads
While the performance opportunities of field-programmable gate arrays (FPGAs) for high-volume query processing are well known, complicated and tedious query compilation procedures still defeat the use of the technology for dynamic query workloads, which are relevant in practice. In this work we report on an FPGA-based stream processing engine that does not have this limitation. We provide a har...
متن کامل